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TECHNICAL MEMORANDUM X-53868  

STUDIES IN SYSTEM SIMULATION 

SUMMARY 

The resul ts  of three mathematical studies of the feasibility of various 
methods of large scale digital system simulation are discussed in this report .  

A c lass  of digital simulation formulae for large scale systems wherein 
numerical methods are applied directly to the system components is considered. 
Stability and e r r o r  analyses are undertaken and function analytic techniques a r e  
employed to derive a c lass  of stable, e r r o r  preserving numerical methods for 
such simulation formulae. Techniques for  implementing the component discre-  
tization process for systems containing both continuous and discrete components 
a r e  indicated. 

The simulation of a dynamical system by a lower order  system is con- 
sidered. The problem is formulated in t e rms  of the Taylor series coefficients 
of the system impulse response from which lower order  Pads  approximations 
may be obtained by computationally appealing formulae. 

A data compression scheme for integer matr ices  wherein prime numbers 
a r e  used for  addressing is formulated. The technique allows a vector with 
integer valued entr ies  to be characterized by a single positive number that is a 
linear function of the given vector and from which the column vector can be 
uniquely recovered by purely algebraic techniques. The procedure is computa- 
tionally limited only by the magnitude and storage accuracy required for the 
characterizing integer and is ideally suited for the characterization of topologi- 
cal matr ices ,  which because of their  inherent sparseness ,  are not affected by 
these limitations. 

I NTR 0 D U CT I 0 N 

The advent of ever  larger systems over the past decade has necessitated 
significant changes in the methods and theory of system simulation. Systems 



with a handful of components and 10 o r  20 degrees of freedom have given way to 
systems containing hundreds of components and having thousands of degrees of 
freedom. A s  such the semi-intuitive simulation procedures that once sufficed 
a r e  giving way to formal algorithmic procedures designed to make optimal use 
of available computational capacity. Such procedures require that one make the 
maximum possible use of the connectivity structure inherent i n  a system, i.e., 
isolating large systems into smaller  subsystems, minimizing the complexity of 
such subsystems, etc. The studies discussed in  this report  are aimed to the 
further development of such techniques. 

This report  is composed of three such studies of the theory underlying 
various techniques of large scale system simulation. Although formulated with 
computational feasibility in mind, these studies are mathematical, not computa- 
tional, in nature. The resul ts  have not been implemented nor have computer 
programs been written. Rather,  mathematical studies of the feasibility of 
certain approaches to the large scale system analysis problem are undertaken. 
Existence theorems and se r i e s  representations are used throughout the deriva- 
tion of the various results,  though once formulated the various resul ts  can be 
implemented by purely algebraic techniques without iteration o r  root finding. 

All three studies are motivated by the realization that practical large 
scale simulation must deal with the components of a system a s  separate identities 
that are combined only after considerable analysis is undertaken at the compo- 
nent level. The first study, therefore, deals with the problems associated with 
applying numerical techniques directly to the system components, and a c lass  
of numerical methods that circumvent the stability problems inherent in such 
an approach are delineated. The second study is concerned with the possibility 
of approximating a subsystem by one of lower order  pr ior  to combining it with 
the remaining system components. Finally, the third study deals with a data 
compression technique for storing the large topological matr ices  encountered 
in large scale system simulation. 

GlTAL SYSTEM S 
BY MEANS OF ~ Q M P Q ~ E ~  

Introduction 
A differential system is typically composed of a collection of dynamical 

components characterized by ( in  general  nonlinear) differential equations 
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i = 1,2,. . . , m  

together with a set of algebraic connection equations of the type 

K(I ,O,U,W,t)  = 0 . (2) 

Here "D" is the differential operator, I = col(1.) and similarly for  0 and 
X while U and W are system input and output vectors respectively. Note 
that the equations induced by the common connection models (block diagram, 
linear graph, etc.  ) are always linear. It is, however, often convenient' to 
include the effects of nonlinear algebraic components in the connection ( r a the r  
than the component) equations; hence we allow for the possibility of nonlinear 
connection equations. 

1 

Such a system is typically simulated by combining the component equa- 
tions with those for the connections to form a differential equation characterizing 
the ent i re  system2' 

DX = F(X,U, t )  ( 3a) 

W = H(X,U,t)  Y 3b) 

which may be simulated by standard numerical methods. Although the process 
of forming equations ( 3 )  f rom ( I )  and (2 )  is often complex, we may symboli- 
cally write 

and 

I. N. Prasad  and J. Reiss,  The Digital Simulation of Interconnected Systems 
( in  preparation) . 

2. Ibid. 

3. R. Saeks, State Equation Formulation for Multipart Networks, IEEE 
Transaction on Circuit Theory (to appear Feb. 1970) . 
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where K and K are function valued (F)  functions of a function variable 

( f . )  determined by the connection equations. The digital simulation of such a 

system thus takes the form 

F H 

1 

- -  
A(E)X = F(X,U, t )  = EF[f i ] (X,U, t )  

_. 

W = H ( X , U , t )  = E [h . ] (X ,U, t )  H i  

where h ( E )  is a function of the shift operator, E , which in  some sense 
approximates the derivative, and F = K 

- -  
is a corresponding approximation of F 

F '  F = K  

An alternate approach to the simulation problem is to apply numerical 
methods directly to the component differential equations, (I) , yielding discrete  
approximations to the given differential components characterized by the differ- 
ence equations 

i = 1,2,. . . ,m 

- 
where h . (E)  and f. are approximations, a s  before, of D and f. . Now 

observing that the functions K and % , being determined entirely by the 

connection constraints, are unchanged by the component discretization, we 
obtain a discrete  simulation of the overall system as  

1 1 1 

F 

- 
W = KH[hi](X,U,t)  

where h( E)  = diag [hi(  E) ] . This  approach to the simulation problem is 

termed digital simulation by component discretization and is the subject of 
the present work. 

4 



The component discretization conce 
employed in the special case of linear time 
replaces the "Laplace transform" of a differential system by the lrz- 
of a discrete  approximation. The difficulty with these approaches, 
basic problem to be considered in the sequel, is two-fold. 
approximation at the component level may not yield a tlgoodll system approxi- 
mation, and secondly, stable component approximations may yield an  unstable 
system approximation. This  latter problem has been considered by Fowler [ i] 
for the case of linear time-invariant systems composed of a single loop, but 
no general solution has  been given. 

First, a "good" 

In the following sections the concepts of approximation e r r o r  and stability 
of a numerical method are formalized, and necessary and sufficient conditions 
for a numerical method applied to the components of a system to  yield a stable 
system equation are given. Finally, in the last section various techniques for 
implementing a digital simulation program by component discretization are 
indicated. In particular the simulation of systems containing both continuous 
and discrete  components is considered and the possibility of using different 
numerical methods for  different components is explored. 

Stabil ity Analysis 

A numerical method is defined as  the substitution of the difference 
equation 

h( E ) F  = T(X,I, t) ( 9) 

for the differential equation 

I. Definition. A numerical method is component stable if the difference 
equation, ( 9 ) ,  resulting from the substitutions 

and 

is stable whenever the given differential equation, ( 10) , is stable. 

5 



2. Definition. A fa 

A( E)? = KF[fi] (2, U, t) 

resulting from the substitutions 

h . ( E )  - 
1 

i = 1 ,2 , .  . . , m  

in the component differential equations is stable whenever the system differen- 
tial equation 

DX = K [ f . ] (X,U, t )  F i  

is stable. 

The concept of component stability has been widely studied for  both the cases  
of ordinary and partial differential equations. In the particular case of a linear 
time -invariant system with 

- 
necessary and sufficient conditions on the "approximation" f of f to assure 
component stability are known [ 21. In the case of system stability, where one 
requires  that numerical methods applied to the components of a stable system 
yield a stable difference equation characterizing the entire system, a '' theory" 
is available only for  single loop systems [ I ] .  In the following, necessary and 
sufficient conditions for a numerical method to be system stable are derived, 
and the e r r o r  i A e r e n t  in the resulting approximation is analyzed. 

Initially we observe that if one allows unrestricted connections (except 

may have arbi t rar i ly  large sentitivity. 
for the requirement that a differential equation, such as  ( 6 ) ,  characterizing the 
entire system exist), the function K 

Thus any small  variation in  the f .  will yield, for  a sufficiently ill behaved 
F 

1 

to an unstable system difference equation. We therefore have: 

J 



3 .  Lemma. A necessary condition for a family of numerical methods 

hi(E) - D 
i = 1,2,. . . , m  

- 
fi  - fi 

to be system stable is that 
- 
f .  = f. i = 1,2,. . . , m  

1 1 

Of course since system stability subsumes component stability we also have: 

4. Lemma. A necessary condition for a family of numerical methods 

h . ( E )  - D 
1 

i = 1,2,. . . , m  

f - fi i 

to be system stable is that they are component stable. 

Consistent with the preceding lemmas it will be necessary to delineate 
those component stable numerical methods for  which T. = f. ( that  is a condition 

on the function h . ( E )  , which a s su res  component stability when f .  = f. is 

required) .  Of course we must a lso a s su re  that the operator h ( E )  approxi- 
mates  the derivative operator if the solutions of the discretized system are to 
approximate those of the given differential system, and moreover,  hi( E)  must  

be chosen so as to a s su re  the finite dimensionality of the discrete approximating 
system. For linear time-invariant systems the c lass  of A.(E) that satisfies 

these conditions is characterized by the following lemma: 

- 1 1  

1 1 1  

1 

5. Lemma. Let an  a rb i t ra ry  linear time-invariant component be 
characterized by a stable differential equation. Then a necessary and sufficient 
condition on the numerical method 

- 
f .  = f. 
1 1 

7 



to a s su re  that the resulting discretized component will be characterized by a 
stable, finite dimensional difference equation whose solutions approximate those 
of the given component (differential equation) is that the function A. (w) , 
viewed as a complex valued function of a complex variable, satisfy the following 
conditions: 

1 

a.  hi(w) is rational. 

b. Ai(w) approximates ln(w) . 
c. If lw I > 1 , h.(w) is analytic and Rehi(w) > 0 . 

1 

Proof: Condition a is the usual necessary and sufficient condition for a 
difference equation to be finite dimensional while condition b assures  that h. ( E)  
approximates D for if 

1 

then 

h . (E)  FZ ln (E)  = D (13)  
1 

Here the validity of the operator approximation (13)  follows from the complex 
function approximation by means of the spectral  mapping theorem [3] and the 
operator equality of equation (13) is the usual semi-group representation of the 
shift operator through its infinitesimal generator, D [ 31 . Finally condition c 
is a necessary and sufficient condition for component stability. This may be 
demonstrated by representing the component differential equation by its "trans- 
fer function, " Hi( p) , in which case the substitution 

Ai(E) - D (14) 

corresponds to the complex function substitution 

where p is the "Laplace Transform" variable and z is the "z-Transform" 
variable. Clearly the difference equation resulting from the substitution ( 14) 
has "transfer function" 

8 



Now H. ( p )  is stable i f ,  and only if, it is analytic in the region Rep > 0 while 

Hi( z) is stable if, and only if, it is analytic in the region I z 1 > I . If condition 

c is satisfied and the given differential equation is stable, H.( z) is the composi- 

tion of a function taking the region I z I > I analytically to the region Rep > 0 
and a function analytic in  this region. H. ( z )  is therefore analytic in  the region 

I z I > I and thus represents  a stable difference equation, a s  required. Con- 
versely,  if condition c is not satisfied, one can always find an H. ( p )  for which 

H. ( z) does not represent  a stable difference equation. The three conditions 

therefore combine to yield a component stable numerical method of the required 
type while the failure of any one implies that the numerical method is either 
unstable , infinite dimensional or  does not approximate the given differential 
equation. 

1 - 
- 

1 

1 

1 - 
1 

It  should be noted that the above lemma yields a condition that a s su res  
that every stable differential equation will be approximated by a stable difference 
equation. There are, of course,  many values of function A. ( E )  which do not 

satisfy the conditions of the lemma yet still take some stable differential equa- 
tions to  stable difference equations. For instance the forward difference formula 
takes stable differential equations with eigenvalues in a restr ic ted region to 
stable difference equations [ 21 , but it does not take all stable differential 
equations to stable difference equations. Although the above proof of the lemma 
is valid only for  the linear time-invariant case,  we conjecture (but have not 
proven) that the resul t  holds in general. 

1 

The resul t  of lemma 5, which gives a necessary and sufficient condition 
for a c lass  of numerical methods to be component stable, also, upon combina- 
tion with lemmas 3 and 4, yields a necessary condition for system stability. 
In fact, this condition is necessary and sufficient. 

6. Theorem. Let the stable components of an a rb i t ra ry  stable linear 
time -invariant system be discretized by the substitutions 

h . ( E )  - D 
1 

i = 1,2,. . , m  
- 
fi - fi 

9 



Then a necessary and sufficient condition to  assure that the resultant discretized 
system difference equation is stable, finite dimensional and has solutions that 
approximate those of the given system differential equation is that 

- 
f. = f .  
1 1 

i = 1,2,. . . , m  

and hi( w) , viewed as a complex valued function of a complex variable, satis- 

fies the following three conditions. 

a. h. ( w) is rational. 

b. h . ( w )  approximates ln(w) . 

c .  If IwI > I , A.(w) is analytic and Reh.(w) > 0 . 

1 

1 

1 1 

Proof: The necessity of the conditions follows from the preceding lemmas. To  
demonstrate the sufficiency we must show that the discrete  system difference 
equation resulting from the process of the theorem is system stable, finite 
dimensional and has solutions that approximate those of the given differential 
system. The latter two properties follow from the corresponding properties 
of the discretized components and the sufficiency of lemma 5. Finally for  
stability the sufficiency of lemma 5 a s su res  that each component is stable while 
the discrete  system difference equation induced by the component discretization 
is 

where h( E) = diag[ h. ( E )  ] . Now equation ( 17) is just the discretization of the 
I 

given system differential equation, viewed as a single component, by means of 
the numerical method 

K [ f ]  = K [ f ]  F i  F i  

Since each h.( E)  satisfies the conditions of lemma 5 so does their direct  

product, h( E) ; hence the numerical method of equations ( 18) and ( 19) is 
component stable (by lemma 5) and therefore takes the stable system differen- 
tial equation to a stable system difference equation. The specified collection 
of numerical methods is therefore system stable and the theorem is proven. 

1 

10 



The theorem completely delineates the class of numerical methods tha t  
can be successfully employed for  digital system simula 
cretization. Two questions, however, remain. First, 
component discretization process  on simulation e r r o r ?  Secondly, do any numer- 
ical methods satisfying the conditions of the theorem exist? In the former  case 
we observe that the system difference equation obtained by the component dis-  
cretization process ( 17) is precisely the same difference equation that would 
have been obtained by applying the numerical method of equations ( 18) and ( 19) 
directly to the system differential equation. We therefore have: 

7. Corollary. The simulation e r r o r  resulting from the process  of 
theorem 6 is identical to  that which would resul t  upon applying the numerical 
method 

h (E)  - D 

directly to the system differential equation. 

Finally it must  be determined whether any numerical methods satisfying the 
conditions of the theorem exist. This  is indeed the case and, in fact, both 
trapezoidal 

hi(E) = ( E  + I)- '(E - I) 

and backwards 

h.(E)  = E-'(E - I) t 21) 
1 

integrations satisfy the required conditions as does the second order  scheme 

hi( E) = ( 2E2) -I( 3E2 + I) ( 22) 

Of course numerical methods of arbi t rar i ly  high order  that  satisfy the required 
conditions can be obtained by standard approximation techniques. It is note- 
worthy that the conditions of the theorem are never satisfied when A. is a 

polynomial in E , as is the case for  Simpson's rule  and most standard integra- 
tion techniques. 

1 



A digital simulation program employing component discretization has 
two distinguishing characterist ics.  First, since one discretizes continuous 
components as a first s tep  in such a program, components that a r e  discretely 
specified may be included in the system simply by skipping the initial discreti-  
zation step.  Secondly, since each component is discretized independently, 
different approximations [A.  ( E)]  may be used for different components. One 

may therefore use "better" numerical methods for  simulation of those components 
that have small  time constants and/or whose behavior is highly sensitive than 
for the remaining components. 

1 

A component discretization simulation program might allow for four 
c lasses  of dynamical components along with the usual memoryless and connection 
components. These include continuous finite dimensional components specified 
by an ordinary differential equation, continuous ( possibly infinite dimensional) 
components specified by a convolution integral, discrete components specified 
by either a difference equation o r  a discrete convolution, and finally components 
specified by a computer program, such a s  might arise if data analysis techniques 
a r e  used to estimate the dynamics of an unknown device. Clearly if  such a sys-  
tem is to be digitally simulated, one must use component discretization since 
some of the components a r e  specified discretely and others (characterized by 
convolution integrals) cannot be stored on a computer in continuous form even 
though they are specified continuously. 

In implementing such a program, one would input the discrete components 
a s  given and the continuous components together with a specified numerical 
method, i. e. hi( E )  , satisfying the conditions of theorem 6 .  Now as a first 

s tep  the program discretizes the continuous components. The finite dimensional 
components characterized by differential equation a r e  discretized by making 
the substitution 

and then converting the resultant higher order  difference equation to a first 
order difference equation by standard methods. On the other hand those com- 
ponents specified by convolution integrals are discretized by converting them 
to a discrete  convolution with weighting coefficients determined by the numeri- 
cal method. Once al l  of the components have been discretized, the remainder 
of the simulation may be car r ied  out by standard discrete  system methods. 

12 



It is interesting to note that the process of discretizing a continuous 
component by the numerical methods of theorem 6 is essentially a matter  of 
rearranging and indexing the matr ices  characterizing the given continuous 
component and involves no "real computation. Additional computation, cor res -  
ponding to the degree of the numerical method, is, however, reflected in the 
readout process wherein one is dealing with a difference equation of higher 
order  than the given differential equation. For  this reason no computational 
savings is gained by carrying out the discretization at the component level 
since the readout process is still carr ied out at the system level. This is not 
the case for those numerical methods with Ti f fi  , in which case the calcula- 

tion of f. is usually more easily carr ied out at the (essentially decoupled) 

component level than a t  the system level, but such processes do not have the 
system stability characterist ics required to successfully ca r ry  out the compo- 
nent discretization process. 

1 

Conclusions 
Although we have car r ied  out a rather  long and tedious derivation, the 

resu l t s  of the theory are readily applicable. A s  long a s  one employs integra- 
tion techniques of the type indicated by theorem 6 ,  system stability is assured 
independently of the connections or  type of components in a system. In fact, 
even if one integrates with too large a s tep s ize ,  the resultant solution, though 
inaccurate, will tend toward zero rather  than becoming unstable. 

It is interesting to note that in a number of computer aided network 
analysis programs wherein component discretization is used, it has been found 
experimentally that trapezoidal integration is stable while Simpson's rule and 
other polynomial integration routines may be unstable. This is, of course,  
verified by our theory, which also yields a means for obtaining higher order  
stable integration routines. Another area wherein component discretization is 
employed is in the construction of a Digital Difference Analyzer. In such a 
device one immediately replaces integrators in the program with a discrete  
approximation independently of the remainder of the program and is therefore 
using component discretization, if implicitly. A s  i n  the case of network analysis, 
it has  been found experimentally that trapezoidal integration is stable, as  indi- 
cated by the present theory. 

13 



PADZAPPROXIMAT 
THE DEGREE REDUCTION PROBLEM 

Introduction 
In system analysis it is commonly desired to replace a given system by 

one that has a lower degree (order )  but whose external behavior is s imilar  or 
identical to the given system. Such problems are termed "degree reduction 
problems" and a r e  the subject of the present work. 

Possibly the most common manifestation of the degree reduction problem 
in system analysis is the problem of eliminating uncontrollable and/or unobserv- 
able modes from a system to be simulated. That is the removal of internal 
responses that have no effect on the overall external system behavior. Although 
such modes represent unlikely situations for a single component, they occur 
commonly in interconnected systems wherein the effect of a mode in one com- 
ponent is canceled by an equal and opposite effect in another component. For  
instance in an electric network two parallel capacitors exhibit one rather  than 
two independent modes. 

A second c lass  of degree reduction problems encountered in system 
analysis is concerned with modes that have a small  but nonzero effect on the 
overall system behavior. Such characterist ics a r e  often encountered in control 
systems wherein a mode is nominally unobservable but, because of component 
variations and/or simulation e r r o r ,  appears in the output with a small  residue. 
For instance a plant mode that has nominally been canceled by compensation 
techniques may in fact appear with a small  residue because of variations of 
the components from their  nominal values. In such a case the computational 
saving achieved by neglecting such a mode may justify the e r r o r  induced into 
the simulation. 

Finally practical considerations, such as the complexity of the system 
or  the amount of memory required for  simulation, may force one to approximate 
a given system by one of lower degree even at the cost of considerable simula- 
tion error. We thus have a third c lass  of degree reduction problems - approxi- 
mation. 

The study of these three classes of degree reduction problems in a 
context amenable to digital system simulation is the purpose of this work. 

14 



Since the theory i s  essentially a reformulation of the realizability theory of 
Youla [ 4 , 5 ] ,  Ho { 6 ,73 ,  and Kalman4, we state the main resul ts  without proof, 
referr ing t o  the recent text of Kalman, Falb, and Arbib { 81 . In the following 
a "universal system specification" is formulated wherein a system is charac- 
terized by an infinite sequence of matr ices  A . This  sequence, which has  

only a finite number of independent t e rms  and is thus computationally feasible, 
can be obtained by inspection from the system impulse response, t ransfer  
function, and state equations or directly f rom measured data and thus se rves  
as a natural intermediary between the various system specifications. Once 
such a sequence has been constructed (s tar t ing with any of the usual system 
characterizations or  measured da ta) ,  minimal state equations for  the system 
that solve the various degree reductions problems a r e  obtained. Since the 
entire procedure is algebraic, the resulting algorithms a r e  ideally suited for  
digital system simulation, no approximation o r  iteration steps being required. 

i 

System Specification 

The most common methods for characterizing a linear time-invariant 
(finite dimensional) dynamical system a r e  the state equation 

Y = HX ( 24b) 

the system impulse response, K(v)  , such that 

and the transfer function, T (p )  , such that 

where Y ( p) and U (  p) are the "Laplace Transforms" of Y( t) and U (t) 
respectively. Now it is well known that these characterizations are equivalent 
yet the interrelationship between the various characterizations are quite com- 
plex. If one, however, expands K(v) and T(  p) in appropriate se r ies ,  a 
commonality between the three characterizations can be found. Indeed this 
commonality corresponds to readily measurable parameters  of the system. 

4. B. L.  Ho and R. E .  K a h a n ,  the Realization of Constant Input-Output Maps, 
SIAM Journal on Control ( t o  appear).  
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Consider a system impulse response matrix, K(v) , which if it 
represents  a finite dimensional dynamical system, has a Taylor series expansion 

co 
(i-I)  K(v)  = C A v 

i i=l 

about the point v = 0 . Here the ith coefficient matrix,  

derivative of K(v)  evaluated a t  v = 0 and the coefficient sequence completely 
characterizes the system. Although a s  defined, the A sequence appears to 

be infinite, only a finite number of the t e rms  a r e  independent; hence the values 

of Ai 

dynamical system. In fact, we have the following fundamental result ,  which 
completely characterizes the finite dimensionality of the A sequence. 

Ai , is the ( i-I)  st 

i 

form a computationally feasible characterization for  a finite dimensional 

i 

1. Theorem. Let K(v) be the impulse response of a finite dimensional 
system. Then there exists a set of real constants, b,, b2, . . . , bn , such that 

n 
A.  = - E  b A 

1 k k+i-n-i k=l 
i = n+i ,n+2, .  . . 

Moreover, the smallest  n for which this is t rue is the dimension of the mini- 
mal  system ( i .  e. number of state variables) that realizes K(v) exactly, and 
the minimal polynomial of such a system is 

n n-1 n-2 
A ( z )  = z + btz + b 2 ~  + . . . + b n 

A short  proof of this fundamental theorem is given in Reference 8. 

Consistent with the theorem, a knowledge of the first n A . ' s  together with the 

n b . ' s  i s  sufficient to completely characterize the system. Equivalently the 

values of the first 2n A . ' s  completely characterize the system since the values 

of b.'s can be calculated from these by means of the equality of the theorem. 

1 

1 

1 

1 

16 



Although the values of Ai have been derived in t e rms  of the system 

impulse response,  they have an equally natural interpretation in terms of the 
system transfer  function. In this case one takes a Laurant expansion of T(  p) 
about infinity and obtains the series expansion 

W 

The fact that the Laurant coefficients are indeed the same as  the Taylor coef- 
ficient of the impulse, response follows immediately upon an  application of the 
initial value theorem. Of course theorem 1 holds whether the A .  sequence 

is obtained from the impulse response o r  the t ransfer  function. 
1 

Clearly the Ai sequence se rves  as a natural intermediary between the 

frequency and time domains, and in fact completely character izes  the properties 
of both. In fact the A. sequence is also naturally related to the state charac- 

terization of the system. To  see this we observe that for any state equation that 
real izes  a given (external)  system 

1 

Fv 
K(v)  = He G , 

which upon differentiating and evaluating a t  zero  yields 

i-1 
Ai = HF G 

The solution of the converse problem of identifying a state equation, such 
as (24), o r  equivalently the three matrices H, F, and G, given a sequence of 

Ai 3 

solution, though one that requires  a rather  tedious derivation. This result ,  
due to Youla [ 41 and Ho [ 6,7] is predicated on the properties of a Hankel 
matr ix  associated with the A .  sequence. We therefore let J be the block 
symmetr ic  matrix. 

is by no means obvious. Fortunately it has  a computationally appealing 

1 
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n+ I 

. . .  A n+ I 2n-I 

J =  

- 

where n is any integer such that the condition of theorem I holds. Similarly 
we define J' to be the same matrix with the subscripts shifted up by one, 
i. e . ,  the 1-1 entry in J' is A2 and the n-n entry is A . With this mode 

of specifying the A 

characterized by the A 
manipulation. 

2n 
sequence, a minimal state equation realizing the system 

i 
sequence exactly may be obtained by purely algebraic 

i 

2 .  Theorem. Let a system have Hankel matrix,  J , and let P and M 
be a rb i t ra ry  nonsingular matr ices  such that 

PJM = 

Then 

DX = FX + GU 

Y = H x  

is a state equation of minimal dimension realizing the given system exactly if 

F = [In 1 O I P J ' M  c:.] 
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Here I is the n by n unit matrix,  n is the rank of J ,  I and I are 
n r P 

r and p dimensional unit matr ices ,  r is the number of system inputs, p is 
the number of outputs, and in the partitioned matr ices ,  0 is the zero matrix of 
conformable dimension. 

Although the proof of the theorem is quite involved (see for  instance 
Reference 8) its application is quite straightforward. Operationally J is formed 
from the A .  sequence and is diagonalized by P and M . These mat r ices  are 

then used to  calculate F, G ,  and H . Although it is necessary to diagonalize 
J, P and M need not be in any way related; hence the diagonalization may be 
car r ied  out by independent row and column reduction processes,  which yield 
the diagonalization in a fixed number of s teps  without iteration o r  root determi- 
nation. 

1 

If one knows a priori  a minimal set of b as in the next section, such 
i ’  

that theorem i is satisfied, an even simpler state realization that eliminates 
the diagonalization is possible. 

3.  Theorem. Let a system have Hankel matrix, J , and let b. 
1 ’  

i=i, 2, . . . , n be a minimal set of real numbers such that the equality of theorem 
i holds. Then 

DX = FX + GU 

Y =  H x  

is a state equation of minimal dimension realizing the given system exactly if 
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F =  

0 

bil, 

n I 

0 

n 
I 0 

n 
I 

. . .  
n n  

n 
I 

-b I 

Consistent with the preceding development the A sequence, o r  more 
i 

accurately its first 2n te rms ,  se rves  naturally a s  a universal system specifi- 
cation for linear time-invariant (finite dimensional) dynamical systems.  The 
sequence can be obtained from either the time, frequency o r  state representa- 
tion o r  alternatively from direct  measurements of the system. Conversely any 
of the three system representations can be obtained from the A sequence by 

i 
purely algebraic manipulation. Moreover, the close relationship between the 
A .  sequence and measurable system parameters  ( the impulse response, 

frequency response, etc. ) renders  it an ideal medium in which to c a r r y  out 
degree reduction and/or system approximation. 

1 

Degree Reduction Problems 

With the formulation of the A. sequence and its relationship to the 
1 

common system models we may proceed to attack the various degree reduction 
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problems. In fact, much of the preceding theory was developed with the solution 
of the first degree reduction problem in mind (i.  e., the problem of eliminating 
uncontrollable and/or unobservable states from a state equation). This  is 
achieved by start ing with an a rb i t ra ry  state equation representing a given sys-  
tem, such as 

DX = FX + GU 32a) 

and constructing ( the first 2n members  of) its A sequence a s  per  equation 

( 3 0 ) .  Now J and J' are constructed from this sequence and used in theorem 
2 to obtain a minimal state equation having the same input-output behavior as 
the given equations. 

i 

DZ = F Z  + G U  ( 33a) 

Y = HZ ( 33b) 

A s  such, one can construct a pair  of state equations that have the same external 
behavior as  the given equations but without the unobservable and uncontrollable 
states; hence the first degree reduction problem is solved. In fact, the solution 
is entirely algebraic. 

Unlike the first degree reduction problem, the second and third problems 
require that one find a state equation whose impulse response approximates that 
of a given higher order  system. One must therefore choose a mode of approxi- 
mation before a solution can be obtained. There a r e ,  of course,  many possible 
approaches to the approximation problem; for  instance, L, , L2,  Chebychev, 
etc.,  each of which has mer i t s  in various contexts. In the present problem a 
Pad2 approach [ 91 will be taken, primarily because of the computational simplic 
i ty inherent in such an approach; that is, an impulse response K ( v )  is said to 
be a kth order  Pad: approximation of an impulse response K(v)  if the first 
k Taylor series coefficients of x ( v )  coincide with those of K(v)  . In terms 
of the A .  sequence we therefore require  that 

1 - 
A. = A 
1 i 

i =  1,2,. . , 
Consistent with the close relationship between the A 
system models, such a mode of approximation is coxnputationally appealing 
( i f  not of great physical relevance).  

sequence and the various i 
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From theorem i it follows that given any arb i t ra ry  set of mat r ices  

- 
i = i , 2 , .  . . , n  i 

A 

and any set of n real numbers 

i = i , 2 , .  . . , n  i 
b 

the A. sequence defined by equation (35) for i 5 n and by 
1 

n - 
A .  = - c  b A  

1 L k kt-i-n-1 
k=i 

(35) 

(37) 

for i > n has an n dimensional state equation realization (for instance a s  
obtained by theorem 3 ) .  Moreover, the first n Taylor series coefficients of 

the corresponding impulse response are the specified values of and the 

minimal polynomial of the resulting realization is 
i ’  

n n-i  n-2 
A ( z )  = z + b i z  + b z z  + .  . . + b  n 

Clearly if one is given an a rb i t ra ry  A sequence, we can construct an nth 

order  system, which is an nth order  Padsapproximation to the given A 
sequence, simply by letting 

i 

i 

- 
A .  = A i = i , 2 , .  . . , n  ( 39) 1 i 

and choosing the remainder of the sequence by use of equation (37) for 
i 

some arbi t rar i ly  specified set of b . In fact, since the values of b. are 

arbi t rary,  one can completely specify the system dynamics and still achieve 
the required approximation. Formally we have: 

i 1 

4. Theorem. Let an a rb i t ra ry  system be characterized by an A 
i 

sequence. Then for any set of coefficients 

i = 1 , 2 , .  . . , n  bi 
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the sequence 

- 
A. 7 A. 

1 1 
i = 1 , 2 , .  . . , n  

n 

k=i  

- 
A. = - z b A  

1 k k+i-n-1 

characterizes an n-dimensional 

n n-1 
A ( z )  = z + b i z  + .  . 

i = n+i,n+2,.  . . 

system having minimal polynomial 

. + b  n 

which approximates the given system to the nth degree in the Pad; sense,  

Consistent with theorem 4 the second and third degree reduction problems a r e  
solvable by algebraic means if one employs the PadB mode of approximation. 
It should be noted that the Pad$ mode of approximations a s su res  that the approxi- 
mation of the impulse response will be "good" (near  v = 0) while stability 
a s su res  that both the actual and approximate impulse responses will tend to 
zero for large v ; hence the Pad2 mode of approximation is quite reasonable. 
Of course the quality of the approximation can be improved if  one makes an 
appropriate choice of the characterist ic polynomial A( z) , which is arb i t ra ry  
except for  the requirement that it be stable. One approach that further improves 

the approximation near  v = 0 is to choose the b.'s so as to increase the order  

of the Padsapproximation. That i s  the values of b 
1 

a r e  chosen so that 
i 

- 
A. = A n < i s  m Y ( 40) 

1 i 

thereby obtaining an mth order  approximation with an nth order  system. The 
circumstances under which this can be done have been studied5 and will not be 
delineated here.  If appropriate rank conditions on J are satisfied, it is, 
however, possible to achieve a Pad2 approximation with order  as high as 2n . 

An alternative approach, which allows one to  control the approximation 
when v is neither large nor small, is to  choose A(z) so as to  approximate the 
characterist ic function of the given system. In this way one can guarantee that 
the dynamics of the approximate system ( i. e. , oscillitory frequencies, decay 

5. B. L. Ho and R .  E. Kalman, op. cit. 
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ra tes ,  e t c . )  are similar to those of the given system. In particular for the 
second degree reduction problem where one simply des i res  to eliminate negli- 
gible but nonzero modes if h (z )  is taken a s  the factor of the characterist ic 
function of the given system corresponding to the nontrivial modes, then the 
dynamics of the approximate system will be the same as  those.of the given 
system except for the deletion of the negligible modes (i. e. those with smal l  
residues) and slight variations of the residues to the remaining modes to com- 
pensate for  the effects of the deleted poles at v = 0 . The use of Pad2 approxi- 
mations of a system impulse response thus yields a complete solution for  the 
second degree reduction problem and a solution to the third degree reduction 
problem in those circumstances wherein the Pads  cri terion is relevant. More- 
over, in both cases  the procedure is completely algebraic and computationally 
appealing. 

Conclusions 
Although the derivation of the preceding results is quite complex, the 

resul ts  lend readily to the development of computational algorithms for  the 
solution of the degree reduction problem. The required s teps  to implement 
such an algorithm are as follows. 

1. First Degree Reduction Problem. Given an a rb i t ra ry  state equation 
representing a given system, characterized by the three matr ices  F, 6,  and 

H we first form the A. sequence for the system via A .  = H F  G . Now these 

values of A 

characterized by the mat r ices  F, G, and z. Since this equation is minimal, 
all uncontrollable and unobservable modes have been removed while, according 
to the theory, the system (as  observed externally) is unchanged. 

i -1 
1 1 

are used in theorem 2 to form new minimal state equations, 
- -  i 

2. Second Degree Reduction Problem. Given an a rb i t ra ry  state equation 
characterized by mat r ices  F, G, and H , which has characterist ic polynomial 
A( z) , let us assume that A( z) = AI( z)  h2( z) where AI( z) corresponds to n 
significant modes and h2( z)  corresponds to  m negligible modes. Now the 
second degree reduction problem is to find an nth order  system that is the 
same as the given system except for  the elimination of the negligible modes. 

i-1 First one forms the A. sequence via A. = H F  G and lets x. 1 1  = A. for i 
1 1 

less  than o r  equal to n . Now the values of bi are taken as the coefficients 
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of Ai (  z)  and the remainder of the A. sequence i s  formed via equation ( 3 7 )  . 
1 

Finally either theorem 2 o r  3 is used to find the approximate nth order  system 
characterized by matr ices  F, G, and H . - _ .  - 

3 .  Third Degree Reduction Problem. Given an a rb i t ra ry  kth order  
system, characterized by mat r ices  F, G,  and H and characterist ic polynomial 
A (  z )  , the third degree reduction problem is to find an nth order  system that 
approximates the given system in some sense.  Initially we choose x ( z )  to be 
an nth order  polynomial that in some sense approximates A(z) . Now the A, 

i-1 
I 

sequence, A. = H F  G , is formed and used to  define A. = A. for i l e s s  
1 1 1  

than o r  equal to n . Finally the remainder of the Xi sequence is obtained by 

equation ( 3 7 )  , using the coefficients of h( z) for  the b. 's ,  and the state equa- 

tions for  the approximating system, with mat r ices  F, G, and H, are obtained 
either by theorem 2 or  3 .  The key to  the third degree reduction problem is the 
choice of the approximation used to choose h( z) . A decision on this can only 
be made in the context of the application. One possible choice, however, is to 
use a Pad2 approximation about zero.  
frequency characterist ics of the given system were preserved by the approxi- 
mate while the Pad& approximation of the A 

frequency characterist ics are preserved, one would expect a reasonably close 
approximation. 

- 1 - -  

Since this would a s su re  that the low 

sequence a s su res  that the high 
i 

L I NEAR DATA COMPRES S ON FOR TOPOLOG CAL MATR ICES 

n t rod uct ion 
The topological, o r  connection, information in a large scale system is 

often conveniently characterized by a connection matr ix  of some type. Such 
mat r ices  typically have integer entr ies  corresponding ( i n  some sense) to the 
existence of a connection between two components and zeros  in the remaining 
entr ies .  Since in a large scale system a given component is typically connected 
only to two or three others, these matrices are generally sparse ,  though this 
sparseness  may have no discernible pattern. With the ever  increasing size of 
modern systems,  such mat r ices  may have tens of thousands of entr ies ;  hence 
some form of data compression is necessary if they are to be effectively 
employed in  the digital simulation of such systems. 
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There a r e  two basic approaches to the topological data compression 
problem. One is based on the fact that memory words are used inefficiently by 
topological matr ices  (s ince many of the entr ies  a r e  zero and need not be stored) 
and the other based on the fact that available word length is not used efficiently, 
since the entr ies  a r e  usually taken from an alphabet of smal l  integers (including 
zero) which do not require a full word length for storage.  A number of data 
compression techniques based on the first approach are commonly used. Typi- 
cally these s tore  only the nonzero entries together with an address  and are often 
predicated on an a pr ior i  knowledge that the nonzero entr ies  a r e  arranged in 
some specified pattern (such as one nonzero entry pe r  column, etc. ) . It is 
a data compression scheme of the second type that is considered here wherein 
a single element from a large alphabet characterizes a vector of elements taken 
from a small  alphabet. A s  such, one s tores  a large integer ra ther  than a collec- 
tion of small  ones, hence making more efficient use of available word length. 
In the theory neither sparseness  nor "smallness" of the matrix entr ies  is 
required, but computational considerations demand both; hence the technique is 
well suited fo r  topological matr ices  but not generally applicable. 

In the following sections the data compression scheme is developed 
without regard to computational considerations ( i .  e. sparseness ,  magnitude of 
the entr ies ,  e tc .  ) , first for  vectors with nonnegative integer entries,  then for  
vectors with a rb i t ra ry  integer entr ies  and finally for matr ices  with a rb i t ra ry  
integer entries.  In a l l  cases  the scheme is shown to be linear (e i ther  in the 
sense of a group o r  a semi-group) ; hence linear operations on the matr ices  o r  
vectors may be implemented by carrying out corresponding operations on their  
compressed characterizations. Finally algebraic recovery algorithms are 
formulated and an e r r o r  analysis is carr ied out wherein the limitations that 
must be imposed on the technique to assure  accurate recovery of the given 
matrix via computational methods are delineated. 

R epresentat io n Theory 
Initially we will consider a column vector of nonnegative integers.  

The length of such a vector need not be restricted and hence these vectors may 
be taken as infinite if one requires,  in addition, that they have only a finite 
number of nonzero entr ies  (i.  e. they are zero almost everywhere) . Such a 
vector is then a member of the space 
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( N o  the nonnegative integers) which forms a semi-group under componentwise 
addition. A vector a in V is denoted by a = (a1,a2,a3,. . 
let p. be the ith pr ime number. That is pi = 2, pz = 3, p3 = 5, p4 = 7, p5 = 11, 

etc. 

) = (ai) . Also 

1 

(An ordered list of prime numbers is given in Reference IO.) 

Now given any vector a in  V , let O(a) be the positive integer 

Note that since a in V is zero  almost everywhere all but a finite number of 
a 

the factors p i 
equation (42) is finite and can be readily computed. The possibility of identi- 
fying a single integer with a column vector of integers is certainly not surprising 
and can be done by any number of formulae. What is possibly more surprising 
in this case,  however, is that the function 6 (a )  is a linear function on the 
semi-group V and moreover an  isomorphism. A s  such, a can be recovered 
uniquely from 6(a)  . To this end we have: 

i are unity; hence for all practical purposes the product of 

I. Theorem. The function 

a - e (a )  

defined by equation (42)  is a semi-group isomorphism. ( H e r e  N' is the multi- 
plicative semi-group of positive integers) . 

Proof: To prove the theorem we must  show that the function, 0 , is one to 
one, onto and l inear.  In the first case if  0 ( a )  = e (b)  , then 
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i 
a b 

i 1 

i Now since only a finite number of the factors p and p. a unity, the 

unique prime factorization theorem [ 101 applies to equation (43) ; hence a. = b i i  
for all values of i showing that a = b , as required. Therefore 8 is one to one. 

To verify that 8 is onto N' , let n be an a rb i t ra ry  positive integer 
with prime factorization. 

a a 
n =  n p i  = I I P i  03 i m i  

i=l i=l 
( 44) 

where on the right side of equation (44), a is taken as zero  if p. is not a 
prime factor of n . Clearly 

i 1 

and 8 is therefore onto. 

Finally if  a and b are in V , 

( a.+bi) 
e ( a + b )  = co II p. 1 - - (! pri) (z  pri)  = e(a)e(b)  ; 

i=i 1 1=1 i=l 

hence 0 is linear as required. 

Note that repeated application of the formula 6 (a+a) = 8 (a)  8 (a )  yields the 
sca la r  multiplication formula 

(47) 
k 

O(ka) = 8 ( a )  

for any nonnegative integer k . The theorem assures, at least in  theory, that  
a vector a in  V can be recovered uniquely from $(a)  , but no computational 
algorithm for  the recovery process is indicated by the proof. In fact several  
computationally appealing algorithms are possible and will be formulated in 
the following section. 

The preceding theory can be extended to the case of vectors with entr ies  
composed of a rb i t ra ry  integers if one adopts a rational, ra ther  than integer, 
representation. In this case one is dealing with vectors f rom the space 
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of infinite vectors having a finite number of nonzero integer entries.  Clearly 
U is a group under componentwise vector addition. 

For an a rb i t ra ry  vector a in  U let 

be a decomposition of a into the difference of two vectors from V and define 
9 ( a )  as 

where @(as) and eta-) are defined as p e r  equation (43) for a' and a- i n  
V . This is well defined for  if  as and a- represent  the decomposition of a 
wherein the positive entr ies  a r e t a k e n  f o r  - a+ and the negative entr ies  for  - a' , 
any other decomposition has the form a+ = - a+ + k and a- = - a- + k where k 
is in V ; hence 

showing that 8 (a )  is independent of the decomposition employed. Also e (  a) 
defined as per  equation (50) is an  extension of 0 ( a )  
(42) . That is if a is in V , then the two definitions of 0 (a)  coincide (by 
taking a' = 0) . An argument s imilar  to  that of theorem 1 will yield the 
following resul t  wherein it is shown that 8 is a group isomorphism when 
defined on U ; hence the unique recovery and linearity properties obtained 
for  8 when operating on V also hold for its extension. 

as defined in equation 

2. Theorem. The function 

e : u  - Q+ 

a - 8 ( a )  

defined by equation (50)  is a group isomorphism. 
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Although we have formulated the preceding theorem in t e rms  of rational 
numbers, in practice one would probably s tore  the numerator and denominator 
integers separately, in which case it would only be necessary to recover a 
vector in V from an integer and one would not have to deal with rational 
numbers computationally. To  justify such an approach, however, it is necessary 
to show that a can be recovered uniquely from 8 (a )  independently of the 
integers used to  represent  e ( a )  . Assuming an algorithm is available with 
which to  calculate e- l (n)  for any integer (see the following section) , it suf- 
fices here to show that 

is independent of the integers n and m used to represent  @ ( a )  = n/m . To do 
this let  n and m be the unique pair  [ 10)  of relatively pr ime integers such that 
Q ( a )  = n/m . Then any other such representation, such as O(a) = p/q , satis- 
fies the equalities 

p = kn ( 53)  

and 

q = km t 54) 

with k in N1 ; hence 

= e-'(k) + O"(n) - e- l (k)  - e- l (m) (55) 

The vector a recovered is therefore independent of the particular integers 
p/q used to  represent e ( a )  ; hence it is reasonable to s tore  two separate 
integers from which common factors need not be removed before recovering a . 

The preceding vector representations can be extended to form a matrix 
representation in a number of ways. Possibly the most  convenient is to simply 
"unfold" a p by r matr ix  to form a p r  vector and apply the preceding repre- 
sentations directly. This, unfortunately, is not algebraically well behaved and 
resul ts  in extremely large integer representations, which, as will be shown in 
the sequel ,  is the pr imary limitation on the application of the scheme. W e  
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therefore prefer to apply the representation separately to each column vector 
of a matr ix  separately, thereby yielding a representation for  a matr ix  as a row 
vector of column representations. That is for a matrix,  M , we have 

8 ( M )  = row[e(mi)  ,O(mz) ,  . . . , e ( m  ) ]  = row0(m.) (56) r 1 

where m. is the ith column vector of the matrix M . So defined, 8 is a 

natural extension of the preceding vector representation since if M is composed 
of a single column vector, the single representing rational number of equation 
(56) is the same as that of equation (50) . Also the linearity of 0 is preserved 
via the formula 

1 

e ( M + N )  = row[e(mi)e(n i ) ]  ( 57) 

and the one to one, onto properties of e follow from the corresponding proper- 
ties for the individual column vectors.  A s  before there  is no limitation on the 
s ize  of the matr ices  employed; hence we deal with infinite mat r ices  that are 
zero almost everywhere, this group being denoted by W . Unlike the previous 
development, our representation is a vector of positive rational numbers, ra ther  
than a single number. Since our matr ices  are zero almost everywhere, the 
representing vectors a r e  one almost everywhere. We therefore denote by S+ 
the space of infinite vectors with positive rational entr ies ,  which are one almost 
everywhere, Clearly this space is a group under componentwise multiplication 
for  which we have the following representation theorem. 

3 .  Theorem. The function 

e : w  - S+ 

M - 0 ( M )  

defined by equation (56) is a group isomorphism. 

Since 0 is linear, one can add matr ices  by carrying out a component- 
wise multiplication on the entr ies  of their  representations. Unfortunately a 
s imilar  formula for matrix multiplication does not exist. We can, however, 
multiply the representation of a matrix by an  unrepresented matr ix  to obtain 
the representation of its product. A little algebra will reveal that for matr ices  
M and N 

31 



hence matr ix  multiplication can be done in a sense.  

Finally we note that one can ca r ry  out column operations directly on 
Q ( M )  for column interchange; multiplication of a column by a sca la r  and the 
addition of two columns can all be carr ied out directly in t e rms  of the e (m. )  . 

1 

Recovery Algorithms 

In the preceding development we have shown that, in theory, a can be 
uniquely recovered from 8 ( a )  . It, however, remains to obtain a computa- 
tionally feasible algorithm for calculating a given e (a )  . Clearly it suffices to 
consider the case where 8 (a )  is in N' and a is in V since the representa- 
tions for  a in U and a in W are just  collections of representation of the 
former type. Our fundamental lemma in this respect is the following wherein 
the square bracket notation is used to  denote the least integer operation [ 101. 

4. Lemma. For  any integer n and prime number p 

k is one if  p divides n and zero otherwise. 

Proof: If p divides n , the n/p is an integer; hence 
k k 

and 

k [I - n/p + [n/pk]] = 111 = i 

k On the other hand if  p does not divide n , 
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is a fraction between zero and one (exclusive) ; hence one minus this fraction is 
also such a fraction and therefore its greatest  integer is zero as required. In 

k k 
essence the lemma says that the number [I - n/p + [n/p”]] is one if n/p 
is an  integer and ze ro  if it is a fraction and is therefore readily evaluated Corn-  
putationally. Recognizing that the number 0 (a) ( for  a in V) has a factor 

, the lemma leads immediately to the following recovery theorem. pi 

a 
i 

5. Theorem. 

if  and only if k 5 a i .  

Operationally there a r e  a number of ways in which theorem 5 can be 
applied. If one is dealing with possibly large integers,  a the most  efficient i ’  
approach is to search  for the largest k such that 

k (i.e. the largest  k such that 0 ( a ) / p  is an integer) .  Assuming that the 
i 

integers a are known to  be bounded by 2 , this search can be done in  m 

s t e p s ,  as follows. 

m 
i 

m 
6. Corollary. Let a in  V be such that a.  < 2 . Then a. can be 

1 1 

calculated from Q ( a )  in no more than m s teps  by means of the following 
algorithm. 

m-I a. Let d = 2 ; let j = I .  

d 
b. If O(a)/pi is an  integer a. 2 d , go to c. 

1 

d 
If ,9 (a ) /p i  is not an integer a. < d go to d. 

1 

m-j-i c. Let d = d +  2 ; let j = j + i ; go to b. 

m-j-I 
d. Let d = d - 2  ; let j = j + i ; go to b. 
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Clearly after m s t e p s  of the above algorithm the value of a has been "trapped" 
and the recovery is complete. 

i 

A second approach to the recovery process is well suited for the case 
is known to be small ,  as for instance in the storage of topological 

i 
when a 

matr ices .  In this case a. can be calculated by the following formula, which 

converges in a .  + 1 steps.  
1 

1 

7. Corollary. 

Here if  a t e rm is zero,  a l l  future t e rms  will also be zero; hence the summation 
may cease when the first zero te rm is obtained after a.  + I steps.  

1 

A final algorithm a lso  requires  a .  + 1 steps and is essentially a variation 
of that if  corollary 7 but requires  the division of smaller integers and always 
divides by p rather  than p k  . 

i 

8. Corollary. Let 

represent  a continued division algorithm. Then a. = k - 1 such that @,(a) is 

the first quotient that is not an integer; at this point the algorithm terminates.  
1 
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Clearly all of the above algorithms a r e  predicated on our ability to 
k 

determine whether o r  not 8 ( a )  /p 
with sufficient accuracy to determine this fact if a is to be recovered exactly. 
Now any integral e r r o r  in 8 (a) certainly resu l t s  in the change of some pr ime 
factors;  hence the integer e ( a )  must  be known exactly. Of course since it is 
known a pr ior i  that e ( a )  is an integer, one can accept fractional e r r o r s  of less 
than half, but no integral e r r o r s  are acceptable if a is to be recovered exactly. 
On a computer, therefore, e (a)  must  be stored as an integer number; it does 
not suffice to  s to re  a few significant figures together with an exponent. The 
application of the data compression scheme is thus limited by the s ize  of the 
integers @ ( a )  that can be s tored on the available computer. Of course multiple 
precision words can be used but even then the number e(a) may become too 
large for  the machine unless the vector a is in some way restricted.  In the 
particular case of the vectors resulting from topological mat r ices  a is sparse ;  
hence many of the factors in 8 (a)  are unity and are composed of small  inte- 
gers ;  hence the prime factors  of e (a )  are raised to  small  powers only. These 
two conditions thus tend to keep e (a )  within reasonable bounds and render  the 
procedure practicable for such matr ices .  Note that although the sparseness  of 
the topological mat r ices  is necessary to render  the data compression scheme 
feasible, one does not need to assume a specified pattern of sparseness  and 
may therefore manipulate compressed topological matr ices  without regard fo r  
variations in the sparseness  pattern so long as the magnitude of 0 (a )  
within reasonable bounds. 

is an  integer. A s  such 8 (a) must  be stored 

remains 

Conclusions 

To implement the preceding data compression scheme one needs for the 
encoding process an ordered table of primes and for the decoding process a 

subroutine for evaluating [ i - e (a )  /pk + [e ( a )  /pk] ] ( that  is an algorithm for  

determining whether or  not 8 (a )  /p 
can, of course,  simply tabulate a sufficiently long list of primes,  but a more  
efficient approach is to use a polynomial approximation. That is a polynomial 
P ( x )  such that 

k 
is an integer) . In the former  case one 

which yields p exactly upon taking the integer par t  of P (  i) . Since the pr imes i 
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a r e  a reasonably smooth monotonic function of the integers, a relatively low 
order  polynomial P ( x )  can be used to calculate, exactly, a large number of 

primes.  In the case of the decoder one can, of course,  calculate 6 ( a ) / p  
exactly prior to determining whether o r  not it is an integer, but since one is not 

k 
really interested in the value of 6 ( a ) / p  , a simpler subroutine is possible 

wherein the calculation of 6 (a )  /p is carr ied only far enough to determine 
whether o r  not it is an integer. 

k 

k 
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